
RAD-R124 288 EDITSPEC: SYSTEM MANUAL YOLUJIE IV DATA NANDLER(U) i
CONSTRUCTION ENGINEERING RESEARCH LAS (ARMY) CHAMPAIGN
IL E S NEELY NOV 8 DOD/DF-83/882F

UNCLASSIFIED F/G 9/2 N

Ehhhhhmssmhil
mhhhohhhhshhhI
EhhhhhhhhohmhE
EhhhhhhEmhhhhIsmhhhhhhmhhhEEhhhEENDhhEminimum: L

INI.

1.2 LA 1.

ICROOP REOUINTS HRNAINLBRA FSADRS16-

I L M

,- •

7-7:77.

1==''

Computer-Based Specifications

EDITSPEC SYSTEM MANUAL

VOLUME FOUR -- DATA HANDLER

by

Edgar S. Neely Jr. D IELECrTF-)

FEB 8 1983 .

CDFinal Technical Reportc

LLJ
_j November 1980

NATIONAL TECHNICAL
INFORMATION SERVICE

%AWNIRItlo, 9 111NC

83 02 OF, 140,

PREFACE TO ALL EDITSPEC SYSTEM REPORTS

The purpose of the EDITSPEC system reports is to provide com-
plete documentation to all personnel that must be involved with the
EDITSPEC system. Such personnel include managers, specification
writers, typists, computer systems analysts, and computer program-
mers. Each personnel group requires different documentation. The
reports required and the order of reading are shown in the table
below.

NFor

. -"

, ml.~ ' - -. . . - . - . L,-+ + : + -: " + .- . ' . _ .. o- . ' . - "

i7
m,7 7

ABSTRACT

This report provides computer programmers with documentation for a
machine-independent scientific and engineering data-handler. The
report discusses design concepts, subroutine functions, application
commands, error messages, program conversion, test routines, and pro-
cedures for changing the data-handler. The data-handler has been
designed to minimize the resources required for its conversion and
operation.

Iii

• _ +'j ,..," .' ". " • ' "> " . .,l', 4" '+m '

FOREWORD

This investigation was performed for the Directorate of Military
Construction, Office of the Chief of Engineers (OCE), under Project
4A762731AT41, "Design, Construction, and Operation and Maintenance
Technology for Military Facilities"; Task T1, Development Work Unit
009, "Computer-Based Specifications." The applicable QCR is 1.10.001.
The OCE Technical Monitor was William Darnell.

The basic computer programs were written by Multi-Systems Inc.,
Cambridge, Mass., under contract DACA 23-75-C-0003, and modified by
Hans Wegener and Jayant Krishnaswamy of CERL.

The study was performed by the Management Systems Branch (Dr. 0.
E. Rood, Jr., Chief), Facility Acquisition and Construction Division
(Mr. E. A. Lotz, Chief), U.S. Army Construction Engi.neering Research
Laboratory (CERL).

COL Louis J. Circeo is Commander and Director of CERL, and Dr.
L. R. Shaffer is is Technical Director.

111

, _- _- - _. . .' ,' . - - . . .". , - .; _ - , - .'- -- " " , . . . - . . .

LIST OF REVISIONS
TO THIS DOCUMENT

Nuerio Revied Reason for PagesNubrRvsdRevisions Revised

iv

,, _i _- . " - ._ : : . ._ . .. - :. - - " -. - .. . - .,-. :,:- .-,-, --

,..

PREFACE
ABSTRACT
FOREWORD
REVISIONS

7.

1 Design Concepts 1
Introduction 1
Definitions 1
Data Storage Modes 2
Data Management Implementation 2

2 Applying the Data Handler 33

3 Application Command Subroutine Description 34
V-. Definitions 34

Learning the Commands 35
Command Descriptions

4 Subroutine Functions 62

5 Error Messages 63

6 Program Conversion 65

7 Documentation Tapes 67

8 Test Routines 69

9 Changes to Data-Handler Programs 70

APPENDIX A Data Handler Dump Example
APPENDIX B Subroutine Functions

V

.

.

.50272-10t

REPORT DOCUMEN4TATIO DO/D-3/0 f LO 2.. Recdpeof Accession, NO.
PAGE 1O"/T--83/002fo-

4. tFitle and Subtitle L. Rep~ Doet
EDITSPEC: System Manual, Volume IV: Data Handler November 1980

7. Authrs) L. Perfemnial; Organization Rat. No.
Edgar S. Neely, Jr. __________

9- Performing Organization NAlme and Address 1O. P#9uect/Tas/Wwri Unit N.

Department of the Army 4AL6 273 lAT42l/TL/9_
Construction Engineering Research Laboratory1. &&tCorGat)N.

P.O. Box 4005.
Champaign, IL 61820

I2. S96pOning Organization Namne and Address I&. Type of Roedrt&FiWe Covered

(same)

IL15 Supplementary Notes

*For magnetic tapes, see

3&16 Abstract (Unit 200 words)
~The EDITSPEC System is an automated system designed to produce cohstruc-
tion specifications from Corps of Engineers Guide Specifications. The

* System uses one central computer and a communications network to provide
* remote terminal access by Corps offices, nationwide to a central data

base.

This report provides computer p~rogrammners with documentation for a
machine-independent scientific and engineering data-handler. The
report discusses design concepts, subroutine functions, application
commands, error messages, program-conversion, test routines, and pro-

* cedures for changing the data-handler. The data-handler has been
designed to minimize the resources required for its conversion and

operation..

* 27. POeumfent Analsla a. Desculptors

Construction Specifications
Guide Specifications
Military Construction

6. WenAlflee/Open.Endod Terms

a. COSATI Flowi/an"e

* IS* 51117 99. Security Clamm MTIS 1111o90" 21. No. of Pae

UNCLASSIFIED
26. 11"cedy Clogs (This Page) 22. Pile.
UNCLASSIFIED

U ~Sa Iaetutisn on Rover". OPTIONAL FORM 212 (4-77)
frerly NTIS-IS)

O~gawmonl01 Comerc

77.7-77 777.

EDITSPEC SYSTEMS MANUAL
VOLUME IV: DATA HANDLER

1 DESIGN CONCEPTS

Introduction

This data-handler is a feasible method by which a programmer can
create data structures on disk without knowing record sizes, data
locations, etc. This direct access system provides in-core data han-
dling so that physical disk accesses are minimized.

The programs consist of several data storage and retrieval func-

tions and a variety of other utilities which create .and delete files,
inform the user of file status, and establish or remove access res-
trictions. The programs are written mostly in ANSI FORTRAN.

Definitions
,,I

DATA SET: a named, independently accessible collection of data on a
direct access storage device, created and maintained by the host
operating system; called a file by some hardware manufacturers.

PHYSICAL RECORD: a physical portion of a data set usually of fixed
length, which is accessible by means of one input/output operation
the computing system.

FILE: a named, logical subdivision of a data set.

LOGICAL RECORD: a logical portion of a file of variable length, which
is accessible through one application of the data-handler; usually
referred to simply as "record."

In essence, the data-handler maintai:t a logical structure of
named files composed of variable-length, randomly accessible records
by manipulating physical records in one or more data sets.

APPLICATION PROGRAM: The set of subroutine that are using the
OH for data base management.

4."

N ... -.

Data Storage Modes

Two storage modes control how data is stored in the physical
records on disk: CHAIN and PACK.

In CHAIN mode, the data-handll store with each logical record
the record identifiers of the preceding and following logical records
in the file. The logical records must therefore remain in the order
in which they are written. Chain pointers are available to the pro-
grammer who is reading or updating logical records. The pointers are
always updated whenever a logical record is added or lengthened.

In PACK mode, the data-handler-routines will fill physical

records to capacity and, when necessary, segment logical records
which span two or more physical records.

CHAIN and PACK modes may be specified independently so that four
combinations of options are available:

0 - neither CHAIN nor PACK
1 - CHAIN only
2 - PACK only
3 - CHAIN and PACK

The OH recognizes only the first definition of this option. Any

redefinitions are ignored by the DH.

Data Management Implementation

The "data handler" (DH) is a general-purpose, direct-access data
management system. The DH appears to an application program as a set
of subroutines. The OH is written largely in ANS FORTRAN. The OH is
designed as an interface between an application program and FORTRAN
direct-access input/output (I/0) facilities (Figure 1). This pro-
vides a two-fold advantage. Direct-access I/O can be performed (1)
at a logical level and (2) in a machine-independent manner.

The DH deals with only direct-access data sets (Figure 2). The
contents of a dataset must be understood from three different view
points:

(1) host system

(2) data handler

* (3) application program

a. Host System. Data sets consist of physical records.

b. Data Handler. Data sets consist of files. Files consist of
physical records. Physical records may also be referred to as

2

.,. ...
.......................... ".. .. .-. -, -...

T,*,u 77i- 77 - 7 7

pC

!1L
'M, ' z1

C26

77777.777-7-7-

00

CD .: - -h C

-h0

C6 C

C,

-0'

CCA

blocks. Blocks (physical. records) are composed of logical record
segments.

c. Application Program. Data sets r.onsist of files. Files
consist of logical records.

Several cross-relationships should be noted: :

(1) The logical record of the application program may actually
be stored within one or more data handler logical record segments.

(2) A data handler block may be written as one or more operat-
ing system physical records.

Program Variable Naming Conventions

The names used for variables within the data handler follow the
following logical order:

(1) All variable names are five letters in length.

(2) The first letter options are:

a. K for contents of

b. I for index to

c. N for number of

(3) The second and third letters options are:

"a. PR for physical record

b. LR for logical record ..

c. DS for data set

d. OF for open file

e. BT for block table

(4) The fourth letter options are:

a. H for header

(5) The fifth letter options are:

a. S for status

b. P for previous

5

. . .. ,

I J l . l !I-I l I I I.. . . n- ., - -

c. F for following

d. N for number

Data Set Structres

The first two blocks of a direct-access data set maintained by
the DH contain three independent, special-purpose LR segments (Figure
3). These blocks do not belong to any file, and the segments are
known as the data set header (DSHED), the file directory (FD), and
the free space table (FST). The DSHED and FD are contained in the
first block, while the FST is contained in the second.

The OSHED contains various information about the data set and
host computer system (Figure 4). See the discussion of data set
table entry b*.I4*wo/'the meanings of KDSSU, KDSPR, KDSBI, KDSFS, and
KDSFD. See jb.ItJ for the meanings of NBSGN, NBBLK, DHFLG,
0PSYS(2), and DHVER. The time is given in the form hh:nvn:ss, and the
date is given left-justified and blank-padded in the form dd-mm-yy;
they are the time and date when the data set was initialized by the
DH. The rest of the elements in the DSHED are the same as
identically-named elements in blank COMMON.

The FD contains an entry for each file that is contained in the
data set. An FD entry is identical to an open file table entry. FD
entries are numbered consecutively beginning with one.

The FST is a bit map; each bit indicates whether (on) or not
(off) the block corresponding to that bit has been allocated to a
file in the data set. Both the FD and FST are extended when neces -'- /- -
sary to additional LR segments. -7 c-.. , ,, -

The remaining blocks are used to store data. The data is organ-
ized into dynamic collections of blocks known as files. One block
can belong to only one file.

3lock Structures

Blocks within a dataset are sequentially numbered starting with
one. A block can belong to only one file. The block number is the
sequential number assigned to a block. A block is composed of three
sections.

The first three SU's in each block are known as the physical
record (PR.) header (figures). The first SU contains the contents of
the physical record header status (KPRHS). The high-order (left-
hand) half 6f KPRHS is the number of logical record segments in the
block, whIle the low-order half is the number of unused SU's at the
end of the block. The second SU KPRHP is the block number of the
block that was previously written for the file to which this block
belongs; it is zero if this block is the first one in the file. The

6

. . -. , - . . , ' , . • - ., w'. , _ . , . = . ' . - - - -

-. ~. . -.. - . .. - -.--------------------------------

I

I

-

U - -
I..

%-

q~=
0

_______ 0-'

a,
C,,

0
0
0

r~i
a'

* 01

- I:
*

C.'
.2 .2

7

-! E

|.- z - C'

Cfl CD V)e 4, 3: u a.

. 0

" > > m -_

z z z (L
I ,

0 ' 0
q

--

°0

p

42
42= @1Uo3~ ~

.00 ~ 0
CO 0

.0c0~ 0
0

0- C
U~ 42 ~
42('~ 3
I--*0 ~- ~042 3 =

042

0

~.1
- - -' - 0

I 0
C,, 0-u- I

= = go
0- 0~ 0.

42

LL

0

- ~ ~0
42

.~ o 2 0001 U 010U0 0 ~~i424~ ~ Cfl ~Cfl

9

- - ~ *** - .- .- ..*-.-7y:..

third SU KPRHF is the block number of the block that was subsequently
written or is next to be added to this file. Hence, the blocks that
constitute a file are chained together in both directions.

The application programs logical record may be divided by the DH
into segments for storage. These segments are known as logical
record segments. The block will contain one or more logical record

*: (LR) segments. There are three reasons why an LR may be represented
by more than one segment: (1) the LR is too long to fit in one
block; (2) the LR is too long to fit into the unused portion of any
block belonging to the file for which this LR is written, and the
pack option is in effect for this file; (3) the LR cannot be contigu-
ously extended due to lack of space in the block.

The remaining portion of the block contains unused SU's.

LogicaZ Record Segment Structure

Associated with each LR segment is an SU quantity known as the
LR segment identifier (ID). The high-order quarter of this quantity
is the segment number, which is the position of the segment' within
the block, relative to the beginning of the block; segments are num-

* bered beginning with zero. The low-order three-quarters of the LR
segment ID constitute the block number. If the LR segment is the'.
first or only segment of the LR, then the LR segment ID is often
called simply the LR ID.

The first several SU's in each LR segment are known as the LR
segment header (Figure 6). The extreme high-order portion of KLRHS
contains three status bits known as the continue, segment, and delete
bits, whose positions are given by the COMMON variables NBCON, NBSEG,
and NBDEL, respectively (Table 1). Bits within an SU are numbered
from righl to left beginning with zero. The continue bit indicates
whether (on) or not (off) this LR segment is continued to a subse-
quent segment. The segment bit indicates whether (on) or not (off)
this segment is continued from a previous segment. The delete b
indicates whether or not this LR has been The four low-
order bits inthe hi'gh-order-half-c6nst-itute the number of free char-
acters in the last SU. The low-order half of KLRHS is the number of
SU's in the LR (segment) including the header. The segments that
represent an LR are chained together in both directions, but the LR's
that constitute a file are chained only if the chain option is in
effect for the file (Figure 7).

KLRHP contains the following:
fm

No Chain Option

(1) If this LRS is the first one in the file, zero.

10

.."........................."...:. . * *. * *: .!:: :: ; . .': . " *: * * " .: * *.., . ..,.

zz0
cc)

0 c
43oA a.4

L-0 0
-- 00

K ~ ~ 4 75o.- _ ~
.E;0 0 *; 0.

N CD c 04
eg~ a

00

E

0ror x ..

0L

o zC.
w A

W v
cr

zz

0 -J -J12

TABLE 1

FIXED AREA

Variable/ Position
Array in COMMON Description Va......alue

1. SYSTEM WIDE

1

2

3

4

*** Machine Characteristics ***

NBW 5 Number of bits. per word

NCW 6 Number characters in a word

NAW 7 Number of addresses in a word

NBC 8 Number of bits per character

NCU 9 Number of characters in a
"standard unit" (approximately
32 bits long)

NBU 10 Number of bits per standard
unit

NAU 11 Number of addresses in a

standard unit

NBU2 12 One-half of NBU

NC2U 13 Number of characters in a double
precision variable (about 8-10 chars)

RVRSE 14 Flag telling order of characters:
0 a left to right
1 - right to left

NWPSU is Number of real words per standard
unit:
0 - two SU's per real (e.g. IBM 1130)
1 - one SU per real (e.g. IBM 360)
2 - two real's per SU

13

TABLE 1 (CONT'D)

Variable/ Position
Array in COMMON Description Value

LFIW 16 Number of bits in a FORTRAN integer

LFIWU 17 Number of useable bits in a FORTRAN
integer

18

19

20

21

22

23

** Standard Devices ***

- ICRD 24 Card reader logical unit number

* IPRT 25 Line printer logical unit number

. IPCH 26 Card punch logical unit number

ITAP 27 Magnetic tape logical unit number

ITRMI 28 Terminal input logical unit number

, ITRMO 29 Terminal output logical unit number

JTRMI 30 Second terminal input logical
unit number

JTRMO 31 Second terminal output logical

unit number

IPLT 32 Plotter logical unit number

* IGRAI 33 Interactive graphics input logical
unit

IGRAC 34 Interactive graphics output logical
unit

14

+o.'. ' -> '+'._' L
- . - '- . ' . ' - . ' . ' ' - - ' ' . -. - . ' . - . - +

- "'.. . .-'--..-.."'-.-.-. .".. .".'".. .".+

TABLE 1 (CONT'D)

Variable/ Position
Array in COMMON Description Value

35

36

37

*** Constants and Masks *

TRU 38 Value of logcial true (largest
positive integer)

FALS 39 Value of logical false (largest
negative integer)

ZEROS 40 A word of all "zeros"

ONES 41 A word of all "ones"

FORMI 42 Token format mask (1,2,1)

. FORM2 43 CDL dictionary format mask (2,2)

FORM 44 CDB pointer format mask (3,1)

45

46

47

48

49

**" Executive Data Area *

SCA 50 Subscript of start of communications
area (-176)

ATLID 51 LRID of active task list

SCRFI 52 Name of executive work file

' SCRFL 53 Name of executive work file

15

TABLE 1 (CONT'D)

Variable/ Position

Array in COMMON Description Value

54

• **Lexical Analyzer Data Area *

NXCHR 55 Next character in input buffer

IDFT 56 Data field type

ISTD 57 Start of data field

LSTR 58 Length of string or an integer value

DCOM 59 Command (up to 8 characters) or a

DCCM 60 double precision value

MLCA 61 Maximum length of user communications
area (for referencing in a CDB)

. SYDID 62 LRID of system command dictionary

- DICID 63 LRID of current command dictionary

COBNM 64 Name of current COB

. CDBNM 65 Name of current COB

CDBID 66 LRID of current COB

SYMID 67 LRID of current symbol table

SVTID 68 LRID of current standard value table

NXELM 69 Pointer to next COB element

RELOC 70 Subsystem common relocation factor
(must be a positive number)

CSTID 71 LRID of modifier condition stack

WATID 72 LRID of ID wait list

73

74

16

• - -. . , ..,. .. o . . _ . - --: -,.. -_. ...

TABLE 1 (CONT'D)

Variable/ Position
Array in COMMON Description Value

75

2. DATA HANDLER INTERNAL VARIABLE AND ARRAYS.

IPOOL 76 Position in COMMON of 201
beginning of pool area

IPLEN 77 Length of pool area 9800

NBLMX 78 Maximum length of a block 256

NBSGN 79 Number of bits in a segment 8
number

NBBLK 80 Number of bits in a block 24
number

ILLRH 81 Length of an LR (segment) 4
header

ILRHS 82 Position in LR (segment) 1
header of KLRHS

ILRHN 83 Position in LR (segment) 2
header of KLRHN

ILRH," 84 Position in LR (segment) 3
header of KLRHP

ILRHF 85 Position in LR (segment 4
header of KLRHF

ILPRH 86 Length of a PR header- 3

* IPP.MS 87 Position in PR header of 1
KPRHS

IPRHP 88 Position in PR header of 2
KPRHP

IPRHF 89 Position in PR header of 3
KPRHF

IBTST 90 O'th displacement of BT (computed)

17

TABLE 1 (CONT'D)

Variable/ Position
Array in COMON Description Value

NEBT 91 Number of BT entries (computed)

IELBT 92 Length of a BT entry 273

ILBTH 93 Length of a BT header 17

IBTNS 94 Position in BT header of 1
KBTNS

IBTBL 95 Position in BT header of 2
KBTBL A-,

IBTQ 96 Position in BT header of 3
KBTQ

IBTPP 97 Position in BT header of 4
KBTPP

IBTL 98 Position in BT header of 5
KBTL

- IBTTR 99 Position in BT header of 6
KBTTR

IBTCN 100 Position in BT header of 7
KBTCN

IBTOP 101 Position in BT header of 8
KBTDP

IBTNC 102 Position in BT header of 9
KBTNC

* IBTSW 103 Position in BT header of 10
KBTSW

IBTFN 104 Position in BT header of 11
KBTFN

IBTFI 105 Position in BT header of 15
KBTFI

IBTPI 106 Position in BT header of 16
KBTPI

18

................................

TABLE 1 !fONT'D)

Variable/ Position
Array in COvON Description Value

IBTLN 107 Position in BT header of 17
KBTLN

IBTLG 108 O'th displacement of BT (variable*)
entry referenced as result
of most recent call of DKGET

IBTPQ 109 O'th displacement of BT (computed)
priority queue

IBTOP 110 Position in BT of entry (variable**)
with highest priority

IBTBT 111 Position in BT of entry (variable***)
with lowest priority)

IOFST 112 O'th displacement of OFT (computed)

NEOFT 113 Number of OFT entries 125 -

IELOF 114 Length of an OFT entry 9

IOFFN 115 Position in OFT entry of 5
KOFFN

IOFFL 116 Position in OFT entry of 6
KOFFL

- IOFLL 117 Position of OFT entry of 7
KOFNB

IOFNB 118 - Position in OFT entry of 8

KOFNB

IOFLB 119 Position in OFT entry of 8

KOFLB

IOFFD 120 Position in OFT entry of 9
KOFFD

IDSST 121 O'th displacement of DST 200

IELDS 122 Length of a DST entry 12

19

TABLE I (CONT'O)

Variable/ Position
Array in COMMCN Description Value

IDSLU 123 Position in DST entry of 1
KDSLU

IDSFN 124 Position in DST entry of 2
KDSFN

IOSPR 125 Position in DST entry of
KDSPR

IDSPB 126 Position in DST entry of
KDSPB

1OSPL 127 Position in DST entry of 6
DKSPL

IDSFD 128 Position in DST entry of 8
KDSFD

IDSFS 129 Position in DST entry of 9"
KDSFS

ISSU 130 Position in DST entry of 7

KDSSU

ILDSN 121 Length of a data set name 2

OPSYS(2) 132 Name of host operating 'IBM OS'
system

DHVER 134 DH version 'VIF

DHFLG 135 OH flag 'DH

NBCON I36 Position in KLRHS of 29
continue bit

NESEG 137 Position in KLRHS of 30
segment bit

NBDEL 138 Position in KLRHS of 31
delete bit

NBWIN 139 Position in KBTSW of 0
written-into bit

20

TABLE 1 (CONT'D)

Variable/ Position
Array in COMMON Description Value

6:,

NBRIT 140 Position in KBTSW of 1
write-in-progress bit

NBRED 141 Position in KBTSW of 2
read-in-progress bit

NBOPN 142 Position in KDSLU of 16
open bit

NBOLD 143 Position in KDSLU of 17
old bit

-i NBSAV 144 Position in KDSLU of 18
save bit

" NBSHR 145 Position in KDLSU of 19
share bit

NBCHN 146 Position in KOFFD of C
chain bit

* NSPAK 147 Position in KOFFD of
pack bit

NBPRO 148 Position in KOFFD of 4
protect bit

- NBNDS 149 Bit position in KOFFD of 8

beginning of data set number

KO 150 Zero 0

K1 151 One 1

* K2 152 Two 2

IDSBI 153 Position in DST entry of 10
KDSBI

* IDSWN 154 Position in DST entry of 11
KDSWN

LUZ 155 Position in DST entry of 12
KDSWD

21

TABLE I (CONT'D)

Variable/ Position
Array in COMMON Description Value

HEDLR(4) 156 Work area for an LR (variable)

(segment) header

DST(12) 156 Work area for a DST Entry (variable)

DATA(17) 160 Work area for a BT heacer (variable)

3. DATA HANDLER COMMUNICATIONS.

STASK 176 Sending task name (RSX-11D
scratch area)

LCA 177 Length of user communications area
transmitted by last/next message set

TRACE 178 Executive trace switch: each bit,
when on, indicates a type of tracing
to be printed on unit IPRT.
Bit Value) Item Printed
7T 1 Digitize expansions
1 2 Tokens created
2 4 Macro expansions
3 8 Macro argument

Substitions
4 16 Names of programs/tasks

executea
5 32 Names of COB's called
6 64 Statements of COB's

interpreted
7 128 Common values modified
8 256 Macro processor return

information
9 512 Command dictionary search

information
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

22

TABLE 1 (CCNT'D)

Variable/ Position
Array in COMFON Description Value

EXST1 179 Executive status switch 1: Each
bit, when on. signifies the presence

of some exceptional condition.
Bit (Value) Meaning

I Return to executive
1 2 ID labels required
2 4 ID wait list processing
3 8 Inhibit user program

execution (system control)
4 16 Inhibit user program

Execution (user control)
S5 32 Next record continuation

of preceeding convnar'd
6 64 Repeat tabular processing
7 128 End of file on input
8 256 Input error occurred (CI)
9 512

10 1024 User program signaled
error

11 2048
12 4096 Interactive mode
13 8192
14 16384
15 32768

180

* PSTID 181 LRID of program/CDB stack

TORID 0182 LRID of token list

TVLID 183 LRID of token value table

NXTKN 184 Next token to be processed

185

INCMD 186 Logical unit number from which
to read commands

"' Data Handler Arguments *

MAXGP 187 Maximum number of characters per
GET/PUT

23

TABLE 1 (CONT'D)

Variable/ Position
Array in CCMMON Description Value

NDS 188 Data set number

FILNM 189 File name (up to 8 characters)

FILNM 190 File name (up to 8 characters)

LULID 191 LRID of next (or first) record
pin file

PREID 192 LRID of preceeding (or last) record

LRLEN 193 Logical record length in c:aracters

FSTAT 194 File status (from DKFIL)

.NDA 195 Maximum number of direct-access data
set

IDHTR 196 Data handler trace switch

IDHER 197 User error handling switch

IDKER 198 Data handler error number

SSYSN 199 Subsystem name (up to 8 characters)

SSYSN 200 Subsystem name (up to 8 characters)

* initialized to value of IBTST
initialized to 1
initialized to value of NEBT

24

"Z _' -7"

(2) If this LRS is not the first LRS, LRS ID of the LRS written

previously for this LR.

Chain Option

(1) If this LRS is the first one in the file, zero.

(2) If this is the first LRS of a LR, LR ID for the first LRS
of the previously written.

KLRHF contains the following:

No Chain Option

(1) If LRS not the last LRS in LR, LRS ID of the subsequent
LRS.

(2) If LRS is the last LRS in LR, or the point option is not in

effect, zero.

Chain Option

(1) If LRS is the last LRS in CR, LR ID for the first LRS of
the subseguent record.

The actual data is stored next followed by the unused characters :' .1
in the last SU.. ..

Pro grn Couinon Structure

The great majority of internal variables and arrays used by the
DH are located in blank COMMON (Figure 8). Common consists of a
fixed areA and a pool (dynamic) area. The first sections in the
fixed area contain system-wide and DH communications variables and
arrays. The second section contains the DH internal variables and
arrays. All three sections are documented in Table 1. All positions
and lengths in Table 1 are given in terms of SU's. All elements in
this section that need to be initialized are done so during DH ini-

* tialization.

The pool area contains the four OH tables: the data set table
(DST), the open file table (OFT), the buffer table (BT), and the BT
priority queue. There is an unused area at the end of common.

The DST contains an entry for each data set that is currently in
use by the OH (Figure 9). The high-order half of KDSLU contains four
status bits known as the open, old, save, and share bits, whose posi-
tions are'given by the COMMON variables NB0PN, NB0LD, NBSA, and
NBSHR, respectively (Table 1). The open bit indicates whether or not
the data set is open to the host operating system. The old bit indi-
cates whether or not the data set existed before the current

25

• .--.--... ' . -.- .-.. .," •- --" '"'

d

system-
wide vari-
ablesand
arrays (75

SU's)
data

handler
internal
variables fixed area (200 SU's)

and arraYS
(111) SUs)

data
handler

communica-
tions variables

and arrays
(14 SU's)

data
set

/- table
(variable
length)
open
file

table
(currently
1125 SU's)

buffer
table

(variable pool () area
length) (currently 9800 SU's)

buffer
table

priority
queue

p, (variable
lencth

unused
(variable
length)

Figure 8. Common Layout

26

j 0

41 C

x Y.

41 %- .4).

27 4

• -". .. " " "-. -

execution of the DH. The save bit indicates whether or not the data
set is to be saved at the end of the current execution. The share
bit indicates whether the data set can be shared with another,
concurrently-executing DH task. The low-order half of KDSLU is the
logical unit number.

KDSFN is the data set name, KDSPR is the PR size (in SU's),
KDSPB is the number of whole PR's per block, KDSPL is the number of
SU's in the last (partial) PR of a block if the block does not end on
a PR boundary (it is zero otherwise), KDSSU is the block size (in
SU's), KDSFD is the entry number of the next free FD entry, KDSFS is
the number of blocks initialized in the data set, and KDSWN is the
postion of KDSWN within the FST.

The OFT contains an entry for each file that is currently in use
for output by the OH (Figure 10). KOFFN(4) is the file name. KOFFL
and KOFLL are the LR ID's of the first and last LR's, respectively,
that were written for the file. KOFNB is the block number of the
next block to be added to the file. KOFLB is the block number of the
last block that was written for the file. The high-order half of
KOFFD is the entry number of the FD entry associated with this file.
The bits in the low-order half of K9FFD constitute the data set
number (DST entry number) of the data set to which the file belongs.
The extreme low-order portion of the low-order half of KOFFD contains
three status bits known as the chain, pack, and protect bits, whose
positions are given by the COMMON variables NBCHK, HBPAK, and NBPRO.
The chain and pack bits indicate whether or not the chain and pack
options are in effect for the file. The protect bit indicates
whether or not write protection is in effect for the file.

The BT contains an entry for each block of a data set that is
currently in main storage (Figure 11). KBTNS is the data set number
(DST entry number) of the data set to which this block belongs.

" KBTBL is the block number of the block. KBTQ is the segment number
of the segment which was requested when the block was read into main
storage, and KBTPP is the position in COMMON of the SU immediately
proceeding the beginning of the segment. KBTL and KBTR are the seg-
ment and block numbers, respectively, of the LR that was most
recently referenced in this BT entry. KBTCN is the position within
this LR of the first (data) character (of a set) that was requested.
KBTDP is the position in COMMON of the SU that contains this charac-
ter. KBTNC is the number of characters in the first segment of this
LR. KBTSW contains three status bits known as the written-into,
write-in-progress, and read-in-progress bits, whose positions are
given by the COMMON variables NBWIN, NBWIN, NBRIT, and NBRED, respec-
tively. The written-into bit indicates whether or not the block has
been modified in this BT entry. The write-in progress bit indicates
whether or not an output operation is in progress for the block. The
read-in-progreas bit indicates whether or not an input operation is
in progress for the block. KBTFN(4) is the name of the file to which
the block belongs. KBTFI and KBTPI have the same values as KLRHF and

28

. . .

I

~

0o -~

o *~
~ 0

cJ (J
o ~ 0
.0 ~ O.o
- ~LL.E
~ 0 ~

V C
E 0 6 o~-
o z ~ -z - a *~ *g

C,, C,~ ~ ~ Lii
~ o 0 ~-0 U

U- ...J ..J .0 .0 OY~U0.0.
- --- - - - - 0

- U
~

Z U- ..J Z -J L&.
U- LL U- U- U- U-
U- -

iz
- - - - - - - - N

0

I- I-
0

@1

I:

0 0.
C
0
0 o

I:

h.

U-
.4

29

- - - - - . - - - -

* KBTNS data set No.-DOST

KBTBL block No.
Buffer No. I Buffer No. 2 K emn o euse

KBTPP su position proceeding segment

KSTL most recently referenced segment No.

KBTTR SIblock No.

KBTCN first data chaoracter position

KBTDP su containing .1irst data ctr.
No. of cOrs. in first segment

KBTNC header]
written into bit

KBTSW write in progress bit
read in progress bit

KBTFN(4) file name

KBTFI KLRHF for KBTL

KBTPI KLRHP for KBTTR

KBTLN No. ctrs. in LR

data buffer (currently 256S s

Figure 11. Buffer Table Layout

- . t .- v~.....- -. -

'.1

0
C >~

- c~J
~. L.

N
414) 0

- - - 0
~*.

0~
.~ I-
41u~

2 - - 4) h

* '-'-~2 (04)~
- - 41- *i~~* a,

I-

______ Li~

- N

-d

31

Rm

KLRHP, respectively, in the LR header of the LR given by KBTL and
KBTTR. KBTLN is the number of characters in the LR.

The BT priority queue contains an SU entry for each BT entry
(Figure 12). The high-order half of the i'th BT priority queue entry
is the entry number of the BT entry that was referenced immediately
after the i'th BT entry. The low-order half of the i'th BT priority
queue entry is the entry number of the BT entry that was referenced
immediately before the i'th BT entry. Hence, the BT priority queue
imposes a most-recently-referenced-to-least-recently-referenced ord-
ering on the BT entries. A more recently referenced BT entry is said
to have a higher priority than a less recently referenced BT entry.
A block in a higher-priority BT entry will be retained in main
storage longer than a block in a lower-priority one. .

The DH includes a routine which produces a dump of blank COMMON.
* All items are identified in the same manner as they are in this docu-

mentaion. The values are given in decimal digits and characters as
applicable except for KDSLU, KOFFD, KBTSW, the buffer contents of the
BT entries, and the BT priority queue entries, which are given in

i! hexadecimal digits. An annotated dump is given in Appendix.A.

Definitions

Data Set Block - Fixed-sized unit of information stored on a data
set. The actual information read (or. written) from the disk and
to the local program 1/0 buffer area.

Program I/0 Buffer - Fixed-sized unit of storage in the local program
space to be used to store data read from (to be written to) disk
storage.

*. Physical Secord - Fixed-sized unit of information measurement which
must be equal to or less than the size of the data set block. Wi

32

..... . . .,**'i .. ' .* .,.-.

* . . .*,
.*. . 2.,..

2 APPLYING THE DATA-HANDLER

i The use of the data handler (DH) within a computer system appli-
cation program requires the review and application of two data
handler routines. The first routine, DKNIT, initializes the data
handler, allows the system programmer to define the system parameters
to the data handler, and builds the necessary tables for DH execu-

jtion.

The system programmer must review the definition of each parame-
ter and variable in this routine and define the values with respect
to the actual operating system characteristics.

This routine must be the first routine called by the application
system.

When all processing has been completed the application system
should call DKXIT to logically close all DH managed data sets.

During the period after the call to DKNIT and before DKXIT all
application programs can utilize the DH application routines to read
and/or work information from/to the DH datasets. .4

I "I

"! . /

33ii -
."7

3 APPLICATION COMMAND SUBROUTINE DESCRIPTION

Definitions

Several parameters are kept in COMMON, rather than being passed
as arguments. These include: 'i.flf.P

FILENAME - the name of the file being operated on; it contains
up to 16 characters.

NDS - the data set number, usually 1,2,3, or 4.

PREID - the logical record identifier of the preceding record in
the file.

FOLID - the logical record identifier of the following record in
the file.

LRLEN - the logical record length, in characters.

FSTAT - the file status (see DKFIL 4.8).

34

. - ~ . .~.... . . . q-

Learning the Comrnands

The logical order for learning the commnands and functions is to
*read the descriptions in the following order:

1. Access to Data.

1. LOK/UNLOK - to obtain controlled access to information.

m 2. Data Sets.
1. DKNNDS - To find a data set number.

2. DKDSN - To find data set name

3. DST-Tobangeneral information.

3. Files.

1. DKOPN - To create and/or open a file for writing.

2. DKPUT - To write information.

3. DKINS - To write (insert) information

4. DKGET - To read information U

5. MKEL - To delete information.t

6. DKRNM - To rename the file

7. D#KFIL - To obtain general information

*8. DKLEN' - To obtain the length of a record.

9. DKLOS -To disallow writing

1 35

..................... ,.I.......NN..

77%l

RECORD DELETION
DKDEL

PURPOSE

To delete a specific record within a file or to delete a complete file.

GENERAL FORM

CALL DKDEL (RECID)

where RECID is a zero or the
record id for an
existing record.
(INPUT)

FIELD OPTIONS

FIELD OPTIONS DEFAULT

1. RECID a. valid record id No Default
b. zero (0) to delete

all records in
the file FILENAME

SPECIAL NOTES

The prbgrammer must set variables NDS and FILENAME in common before the
subroutine is called.

36

EXECUTION PROCEDURE

The system will delete the record specified from the data set ND$. If
the RECID is zero, the entire file defined in FILENAME will be deleted

from data set NDS.

37

FIND DATA SET NAME
DKDSN

PURPOSE

To find the dataset name when the dataset number is known.

GENERAL FORM

CALL DKDSN(DSNM)

where is returned as the dataset
name.(output)

FIELD OPTIONS - None

SPECIFIC NOTES

The programmer must set variables NOS and FILENAME in common before the
subroutine is called.

EXECUTION PROCEDURES

The system will locate the data set specified by NDS and return the
dataset name. If the data set is not found, the routine will return the
next data set with a larger NDS valve. NDS will be changed to point to
the new data set. If no more data sets are available, NDS and DSNM will
be zeroed.

38

. .. . o • . r - w z .* - .-- ' .t .- -. - ,-. - - - . . "- ,• -

OBTAIN FILE INFORMATIONT" DKFIL

• :PURPOSE

To obtain the general information about a specified file.

GENERAL FORM

CALL DKFIL

FIELD OPTIONS - None

SPECIAL NOTES

The programmer must define NDS and FILENAME in cormon before this sub-
routine is called.

EXECUTI ON PROCEDURES

FSTAT is returned in common as
I - if the file does not exist
2 - if the file is closed
3 - if the file is open

PREID is returned in common as the record id of the first record in the
file.

FOCID is returned in common as the record id of the last record in the
file.

39

GET INFORMATION FROM DISK
DKGET

PURPOSE

To obtain information from a file on disk storage.

GENERAL FORM

CALL DKGET (RECID, AREA, Li, L2, NC)

where RECID is the logical record
identifier. (INPUT)

AREA is the location
into which the
information is to
be placed. (OUTPUT)

Li is the first charac-
ter to be read
from the record. (INPUT)

L2 is the last charac--
ter to be read
from the record. (INPUT)

NC is the actual
number of charac-
ters read from
the record. (OUTPUT)

FIELD OPTIONS

FIELD OPTIONS DEFAULT

1. RECID a. valid record No Default
id

40

FIELD OPTIONS

FIELD OPTIONS DEFAULT

2. AREA a. one computer No Default
word, variable name.

b. the first computer
word to be used
to hold the data.
An element of a
dimensioned array.

3. Li a. less than one No Default
or greater than the
length of the logical
record, it is inter-
preted as being equal
to one.

b. the first character
to be read.

4. L2 a. greater than the No Default
number of characters
in the specified
logical record or if
less than Li, it is
interpreted as being
equal to the last
character in the re-

b." cord.
b. the last character

to be read.
c. zero - is inter-

preted as being equal
to the last charac-
ter in the record.

5. NC Actual number of No Default

of characters read.

41

.

ri
SPECIAL NOTES

The programmer must set NOS in common before a call to this subroutine.
The programmer can read an entire logical record of unknown length by
setting Li and L2 equal to zero. The programmer must define RECID,
AREA, Li and L2.

EXECUTION PROCEDURES

The system will read the requested information (L1, L2) from the

requested record RECID located on data set NOS. The data will be stored
starting with word AREA. The system will return NC as the number of
characters actually placed into AREA.

44

!.42

RECORD INSERTION

DKINS

PURPOSE

To insert a record at the beginning of a point file or to insert a
record after a specified record in a point file.

GENERAL FORM

CALL DKINS (RECID, AREA, Li, L2)

where RECID is the logical record
identifier after which
the new record is to
be entered. (INPUT)
Is the record id of
the new record; (OUTPUT)

AREA is the first word of
the information to be
placed into the new
record. (INPUT)

Li is the first character
in the record to receive
the first character in
AREA. (INPUT)

L2 is the last character
in the record to receive
information from AREA.
(INPUT)

FIELD OPTIONS

FIELD OPTIONS DEFAULT

1. RECID a. record id after No Default

43

FIELD OPTIONS

FIELD OPTIONS DEFAULT

which the new re-
cord wi I be placed.

b. zero to indicate
placement as the
first record in
the file.

c. computer output.
record id of new
data record.

2. AREA the location in No Default
core from which the
writing will start.

3. Li a. is the first No Default
character in the
record to receive
the first charac-.
ter in AREA.

b. zero to indicate
start with the
first chracter.

4. L2 is the last charac- No Default
ter in the record
to receive informa-
tion from AREA.

SPECIAL NOTES

The programmer must set NDS in common. If the programmer is writing a
new record, FILENAME must be set in common. The programmer must define
RECID, AREA, Li and L2 before calling this subroutine.

44

. * .

EXECUTION PROCEDURES

U A new record will be created after record RECID. If RECID is zero, a
new record will be added to the beginning of the file. The system will
place the first character in AREA in the Li character location in the
new record. Characters will be copied from AREA until the L2 character
has been written into the new file. The record id for the new record
will be returned in RECID.

44

r,45

4,

OBTAIN LOGICAL RECORD LENGTH
DKLEN

PURPOSE

To obtain the logical record length of an existing record.

GENERAL FORM

CALL DKLEN (RECID)

where RECID is an existing
logical record
id. (INPUT)

FIELD OPTIONS -None

SPECIAL NOTES

The programmer must set NDS in COMMON before calling this routine.

EXECUTION PROCEDURES

The system will obtain the length of record RECID in data set NOS and
return it in variable LRLEN in combon. The system sits PREID and FOLID
also.

46

- -"

CLOSE A FILE
OKLOS

3j PURPOSE

To make a file unavailable for writing.

GENERAL FORM

CALL DKLOS

FIELD OPTIONS - None

SPECIAL NOTES

The programmer must set NDS and FILENAME in common before calling this

routine.

EXECUTION PROCEDURES

All records in core for FILENAME are marked for writing and will be
placed onto the disk NOS. The file will be marked as closed and no one
will e allowed to write into the file until another DHOPN is issued.

47

FIND DATASET NUMBER
DKNDS

PURPOSE

To find the data set number when the data set name is known.

GENERAL FORM

CALL (OSNAM, DSNO)

where DSNAM is the name of
the data set. (INPUT)

DSNO is the number of
the data set. (OUTPUT)

FIELD OPTIONS - None

SPECIAL NOTES - None

EXECUTION PROCEDURES

The system searches the data set name list and returns the data set
number DSNO. If the dataset is not found, DSNO will be returned as
zero.

48

. ,-,. ',.. . . - - .'.'. - , - . . - . - " • " . -I I L , - - -

DATA HANDLER INITIALIZATION
DKNIT

PURPOSE

To initialize the data area in core for the data-handler and to estab-
lish the dataset name - logical reference number association.

GENERAL FORM

CALL DKNIT

FIELD OPTIONS - None

SPECIAL NOTES

This routine should be called once at the beginning of the application
system.

EXECUTION PROCEDURES

The system will establish all in core data elements prior to the first
use of any other data-handler subro,:tine.

49

. . ..-.'.''.'.'t' : '' , .. -.: ,,.--

OPEN A FILE
DKOPN

PURPOSE

To open a new or existing file.

GENERAL FORM

CALL DKOPN (lOP)

whiere lop is the storage option
code for a new file
only. (INPUT)

FIELD OPTIONS

FIELD OPTIONS DEFAULT

1. lop a. new files only No Default
0 -neither point

nor pack
1 - point only
2 - pack only
3 -point and pack

b. not used for
existing files

SPECIAL NOTES

The programmer must set NDS and FILENAME in COMMON. lop is only applied
if the file is new.

50

.g.

• '" ," ,- " .' -' -' " "-."". ' " " "' .. ' - . ' -_ . - - - - -. - - "" -- " " - " a a . . .

OPEN A FILE

DKOPN

EXECUTION PROCEDURES

The file FILENAME is opened for writing in data set NOS using the origi-
nal storage option given by the original OKOPN. If the file does not
exist, the file is created.

51

WRITE INFORMATION TO A RECORD
DKPUT

PURPOSE

To write information to a record.

GENERAL FORM

CALL DKPUT (RECID, AREA, Li, L2)

where RECID is a record id in a
data-set. (INPUT) (OUTPUT)

AREA is the information to
be written. (INPUT)

Li is the first character in
the record to receive the
first character in AREA.
(INPUT)

L2 is the last character in
the record to receive data
from AREA. (INPUT)

FIELD OPTIONS

FIELD OPTIONS DEFAULT

1. RECID a. zero - to write No Default
a new record at the
end of a file.

*".(INPUT)
b. a valid record id

of an existing record.
(INPUT)

c. record id of the
record written into.

52

• o " --. . . .-.. -. . . ." - .. - -. .. s. - - -- ,-. -. ,'...... . . . -.*-. • .7 . -

FIELD OPTIONS

FIELD OPTIONS DEFAULT

(OUTPUT)

2. AREA a. one computer No Default
word, variable name

b. the first computer
word to be used
to hold the data.
An element of a
dimensioned array.

3. Li first character in No Default
the record to receive
i nformati on.

4. L2 a. positive - last No Default
character in the
record to receive infor-
mation from AREA.

b. negative - truncation
of the logical record
will occur. The last
character will be the
absolute valve of L2.

SPECIAL NOTES

The programmner must set NDS and FILENAME in COMMON.

EXECUTION PROCEDURE

If RECID is initially zero, a new record at the end of the file will be
generated. The first character in AREA will be placed in the Li charac-
ter position in the record. Copying will continue until a character has

53

.

. . .

been written into the absolute value of L2. If L2 is negative, theexisting record will be reduced to L2 characters.

54

7. 7.
-7

RENAME A FILE
DKRNM

PURPOSE

To change the name of an existing file.

GENERAL FORM

CALL DKRNM (OCDNM, NEWNM)

where OLDNM is the current file
name. (INPUT)

NEWNM is the new file
name. (INPUT)

FIELD OPTIONS - None

SPECIAL NOTES

The programmer must set NDS in COMMON before applying this routine.

EXECUTION PROCEDURE

The old name will be changed to the new name.

. . .5 5

OBTAIN DATASET INFORMATION
DKSET

PURPOSE

To obtain the current information related to a specific document.

GENERAL FORM

CALL DKSET (LBLK, NBU, NTALL)

where LBLK is the block len.gth
in standard units. (OUTPUT)

NBU is the number of blocks
used. (OUTPUT)

NTALL is the total number of blocks
used. (OUTPUT)

FIELD OPTIONS - None

SPECIAL NOTES

The programmer must set NOS before call-ing this routine.

EXECUTION PROCEDURE

The system will set all three parameters and return.

56

.- . -. ..- _ - - . , . - , L

END DATA HANDLER
DKXIT

: PURPOSE

To clear all batters and write out all changes to the disks.

GENERAL FORM

CALL DKXIT

-FIELD OPTIONS - None

SPECIAL NOTES

This routine should be called once before exiting from the application
system.

EXECUTION PROCEDURES

The system will logically end all processing of data. All batters will
be cleared and data change written to disk.

57

ACCESS TO FILES
LOCK
UNLOK

PURPOSE

To obtain access to existing files.

GENERAL FORM

"* CALL LOCK (IND)
CALL UNLOK

where IND indicates control
requested

FIELD OPTIONS

FIELD OPTION DEFAULT

1. IND a. 0 - unconditional No Default
b - 1 - conditional

SPECIAL NOTES

During the actual execution of the data-handler in an interactive or
multiprogramming environment, several users may be executing different
copies of the code at the same time. Some of the users may wish to
access (to read and/or write) the same files at the same time. The
"multi-user" feature will permit concurrently executing programs to
share the use of files. Shared use of these resources must be strictly
controlled in order to ensure that one program does not interfere with
the correct execution of others. This control takes the form of syn-
chronizing use of these resources on the part of the programs invovled.

58

ACCESS TO FILES
LOCK
UNLOK

When a program requires use of a resource, it must request control of
that resource from the operating system. Control of a resource can be
either exclusive or shared. Exclusive control of a resource guarantees
that no other program will be granted access to that resource (write
access). Shared control guarantees that no other program will be
granted exclusive control of that resource, but other programs will be
granted shared control of that resource (read only access).

A.request for either kind of control of a resource can be either condi-
tional or unconditional. For conditional request, control is granted
only if the resource is immediately available. The requesting program
is informed as to whether or not control was granted. For unconditional
requests, control is granted as soon as the resource becomes available.
The requesting program may have to wait for an indefinite amount of
time. This eventuality is entirely transparent to the program itself.

When a program has finished using a resource, it must relinquish control
of that resource so that it becomes available for use by other programs.

REQUESTING AND RELINQUISHING CONTROL OF RESOURCES IS THE PROGRAMMER'S
RESPONSIBILITY. Two subroutines, LOCK and UNLOK, have been made avail-
able for this purpose.

Required Programming Before Calling LOCK or UNLOK

INTEGER RSRCS
COMMON /LOCKC/ RSRCS (7,40), NRSRCS

Before calling LOCK or UNLOK, you must describe the resources to be
requested or relinquished via the array RSRCS. Each column corresponds
to one resource. The number of resources described in RSRCS must be
defined in the yariable NRSRCS.

Before a call to LOCK, RSRCS(2,I), RSRCS(3,I), RSRCS(4,I), and
RSRCS(5,1) must contain the name of the I'th resource requested.
RSRCS(1,I) must contain the number of the data set on which this
resource resides. RSRCS(7,I) should - 1 if exclusive control of this
resource is requested, 0 if shared control is requested. NRSRCS should
contain the number of resources, RSRCS(6,1) should not be used within a
processing program.

LOCK, as its name implies, is to be used to request control of
resources.

59

ACCESS TO FILES
LOCK
UNLOK

LOCK has a single argument, the integer variable IND, which should
- 1 if the request is conditional, 0 if the request is unconditional.
If IND - 1, LOCK will return the status of the request via the argument
IND. IND - I if control of all requested resources was granted, 0 if
control over none of the resources was granted due to the non-
availability of one or more of the resources. If the request was uncon-
ditional, then control of all requested resources was granted (IND was
not modified and still = 0). Note that LOCK (or UNLOK) never modifies
LOCKC.

UNLOK is to be used to relinquish control of resources. UNLOK has
no arguments, since control of resources is always relinquished uncon-
ditional ly.

Application Rules

The following rules must be strictly observed:

(1) Control of a resource should not be requested until it is
needed;

(2) A resource must not be used until after its control has been
requested and granted;

(3) a. The use of DKOPN, OKPUT, OKINS, DKLOS, DKSET, DKRNM,
DKXIT, or DKCLR in connection with a resource- requires
EXCLUSIVE CONTROL of that resource;

b. The use of DKFIL, DKLEN, or DKGET in connection with a
resource requires shared or exclusive control of that
resource;

c. The use of DKNDS, DKNIT, or DKDMP is unrestricted;

(4) Control of a resource must not be relinquished until it is
consistent with respect to both itself and other resources;

(5) Control of a resource should be relinquished as soon as it is
no longer needed.

(6) A resource must not be used after its control has been relin-
quished;

(7) The logic of execution should be such that: UNLOK is not

60

ACCESS TO FILES
LOCK
UNLOK

called without a previous call to LOCK; two calls to
LOCK/UNLOK are never made without an intervening call to
UNLOK/LOCK; LOCK is not called without a subsequent call toill UNLOK.

(8) a. The same resource must not be referenced by two different
columns in RSRCS;

b. The maximum number of resources to be locked is 40;

(9) No assumptions may be made regarding the contents of a
resource at the time its control is granted.

Failure to observe one or more of the above rules will not neces-
sarily result in the occurrence of a perceptible error condition (such
as an ABEND), but resource integrity may nevertheless be seriously
impaired, It is most important that great care in coding be exercised..

61

4~"

4 SUBROUTINE FUNCTIONS

Appendix B briefly describes the functions performed by each
subprogram. This list is ordered by subroutine name.

Subroutines are divided into two general types: (1) application
subroutines, and (2) function subroutines. The user's apply applica-
tion programs application subroutines to request the data handler to
perform work. The application and function subroutines use the func-
tion subroutines to actually perform work within the data handler.

62

5 ERROR MESSAGES

The following data-handler errors are defined below:

DATA-HANDLER PACKAGE ERROR NUMBERS PAGE 1

ERROR ROUTINE CONDITION
NO. -

1 DKNIT - SYST COMMON NOT INITIALIZED
2 DKNIT - NOT ENOUGH SPACE FOR I BUFFER
3 DKGO - NBSGN + NABLK .NE. UBU

F. 4 DKODS - OLD FILE NOT A DH FILE
5 DKODS - CAN'T PROCESS OLD FILE - BLOCK SIZE TOO BIG
6 OKODS - ERROR READING OLD FILE HEADER
7 OKODS - ERROR OPENING OLD FILE
a OKODS - ERROR OPENING NEW FILE
9 DKARG - NDS INVALID

10 DKCDS - ERROR CLOSING FILE & SAVING
11 DKCDS - ERROR CLOSING FILE & DELETING
12 DKRBL.- READ INTO AN ACTIVE BUFFER - INTERNAL ERROR IN D8 OR

POLLUTED BUFFERS
13 DKASG - CHARS IN FILE NAME MORE THAN ALLOWED
14 DKWAT - INTERNAL ERROR - POLLUTED BT EMPTY - WAIT BIT IS ON
15 OKRBL - I/O ERROR DURING READ
16 DKWBL - WRITE FROM ACTIVE BUFFER
17 OKWBL - I/0 ERROR DURING WRITE
18 OKODS - CAN'T PROCESS OLD FILE - NBSGNNBBLK INCONSISTENT

.3

.• - 63

.- 777.

DATA-HANDLER PACKAGE ERROR NUMBERS (CONT'D)

ERROR ROUTINE CONDITION
NO.

WITH THOSE ASSIGNED VIA DKNIT
19 DKRNM - OLD FILENAME DOES NOT EXIST
20 DKGET - GET WORK THAN MAYGP CHARS

21 DKNSG - CONTINUED BIT NOT SET EXPECT TO READ MORE SEGMENTS-
LOGICAL INCONSISTENCY IN FILE

* 22 DKNSG - CONTINUED BIT SET BUT NEXT LRID - OLOGICAL
INCONSISTENCY IN FILE

23 DKSTO - LR SEGMENT NOT IN PP (NON-ZERO SEG COUNT IN HEADER)
24 DKSTO - PP HAS ZERO SEGS; ILLEGAL RECID
25 DKFND/DKGL2 - ACCESS OF A DELETED LR SEGMENT
26 DKGET - ILLEGAL RECID (sO)
27 DKRNM - INVALID OLD FILENAME
28 DKRNM - INVALID NEW FILENAME
29 DKPUT - L1.GT.LRLEN+1 ON UPDATE (EXTEND)
30 DKPUT - FILE NOT OPEN
31 DKPUT - L2.NE.O ON ADD
32 DKPUT - TRY TO PUT MORE THAN MAXGP CHARS
33 DKPUT - INVALID FILENAME
34 DKPUT - L1.LE.O ON UPDATE
35 DKPUT - ABS(L2).LT.L1 ON UPDATE
36 DKDEL - LRID#O FILE DOES NOT EXIST (RECORD DELETE)
37 DKDEL - INVALID FILENAME,
38 DKDEL - PROTECTED FILE
39 DKDEL - SHARED DS
40 DKOPN - OPTION OUT OF RANGE
41 DKOPN - ILLEGAL FILENAME
42 DKOPN - OFT FULL
43 DKSOF - FD FULL NO EXTEND YET
44 DKOPN - PROTECTED FILE
45 DKOPN - SHAPED DS
46 DKFIL - ILLEGAL FILENAME
47 DKGLS - ILLEGAL FILENAME
48 DKRNM - NEW FILENAME ALREADY EXISTS
58 DKFIL - CAN'T GET TO D.HAND TASK
68 UNUSE - D
69 UNUSE - D
70 DKGET - L1.LT.O
71 DKGET - L2.LT.O
72 DKGET - L1.GT.LRLEN
73 DKXBM - BIT MAP IS FULL. CANNOT BE EXTENDED.
74 DKXDS - ALL BLOCKS IN DATASET USED.
75 LOCK/UNLOK - NRSRCS NOT POSITIVE.
76 DKADT - NO ROOM IN DATASET TABLE.

64

6 PROGRAM CONVERSION

The data-handler has been written to minimize the time required
to convert the system from one computer to another. All conversion
instructions are given as comment statements within the code of the
following subroutines:

DKBEX
DKBIN
DKCDS
DKDDF
OKERR
DKGO1
DKJCL
DKMVC
OKNCS
DKNDS
OKNIT
OKODS
OKPAK
DKRBL
DKTRC
OKUPK
OKWAT
DKWBL
DKXDS
SNAP

TIMDAT

The programmer performing this conversion should follow the
instructions given in Appendix C. Several subroutines have been
written in IBM BAL to improve executive speeds. These routines must
be rewritten if the data-handler is being converted for use on com-
puter systems other than the IBM 360/370 series. The following is a
list of the applicable routines:

DKBEX
DKBIN
DKD F
DKJCL
DKMVC
DKNCS
DKPAK
DKUPK
TIMDAT

65

After each program has been rewritten in the new assembly lan-
guage, the code should be added to the documentation tapes immedi-
ately after the previous version. The previous code should not be
removed from the documentation tapes. This documentation system will
allow the data-handler to be loaded in a relatively short time period
onto a new computer system that is using a previously used assembler
with minimal resources.

66

7 DOCUMENTATION TAPES

The documentation tapes provide a complete historic record of
all computer programs ever written for the data-handler. All tapes
are unlabeled, recorded at a density of 800 bits per inch (BPI), and
blocked 800 characters per physical record. Each logical record is
80 characters in length.

The programs are listed in alphabetical order. Assembly pro-
grams are given in chronological order. The computer system and
operating system version should be recorded in each assembly program
in the first few comment cards.

All assembly programs are saved to allow conversion to a new
computer assembly language with minimal resource expenditures. Each
program is written as a separate tape file. The first tape file con-
tains an index of all subsequent files. The format of this index is
shown below:

67

DATA-HANDLER TAPE FILE INDEX

UFILE PROGRAM SOURCE DATE DATE LS
NO. NAME LANGUAGE WITN MODIFIED
3-10 13-20 23-40 43-50 53-60 Card Columns
Right Left Left DO/MM/yy DD/MM/YY Data Form
Justified Justified Justified

68

- -. -

8 TEST ROUTINE

. The last files on the documentation tapes contain a test routine
that checks each application subroutine field. The correct results
of this test routine are given on the tape for checking purposes.

II

69

- .. .-

9 CHANGES TO DATA-HANDLER PROGRAMS

As new functions are implemented into the data-handler, the fol-
lowing steps should be rigidly followed. Execution of these steps
will insure that the changes are performed correctly and documented
completely.

STEP ONE - Write a FORTRAN program, well documented with comment
statements. Follow the standard documentation procedures below. If
an existing program is being changed, change the FORTRAN program
before changing the assembly programs.

Program Name: written as in the first line of the function or subroutine, with
arguments.

Function: brief description of the function of the program.

Author: author's name, date of first writing.

Modifications: author, date and brief description of the reason for the
change(s).

Language: programming language.

Calling Sequence: description of arguments and function results.

Routines Called: list of subroutines and functions called by the program.

Tasks or Modules: tasks or modules containing this routine.

Variables: a description of all variables used in the program.
COMMON variables will generally be described in a "main"
program, referenced in this program. The structure of
arrays and meaning of variables should be fully described.

Program Logic: A detailed description of the algorithm(s) used
and the flow of the program. The comments generating
this portion of the documentation will normally be
scattered throughout the program in complete English
sentences.

STEP TWO - Change the last date modified on the data-handler
tape file index.

STEP THREE - Change the FORTRAN compile listing on the documen-
tation tapes.

70:

STEP FOUR - (If required) - Write the assembly programs.

STEP FIVE - (If required) - Change the last date modified on the
data-handler tape file index.

STEP SIX - (If required) - Change the assembler listing on the
documentation tapes.

*. STEP SEVEN - Change the test routines to completely test the new
feature.

STEP EIGHT - Execute the entire test routine package and replace

the results on the documentation tapes.

STEP NINE - Revise this report as required. Document all
revisions ist-ed for this document at the beginning of the report.

STEP TEN - Revise all application programs as required by the
change in the data-handler.

71

- .° - ."
* -

- - . . ., . -.

4'

APPERSI-A

DATA HANDLER

DUMP EXAMPLE

o* * * @O 41 0~ Pot A 9bi~ * CIO 0' (oA

000000 00 ft00 00

0 0: a a 0000 0 a C 000-000000 CD 000 U

-0 00 N a l aqO a hO V0a *4 040
00000 00-00a C 00 M O

000000000

000000,00000- ac
:00000000 o a000 a

CP 0 0 0 0 0 4 0 o 0 a0 a0.

00 0a 000 0 0 0 0 0 0 0 0 0 0 0 0
a 00000000 Oc= 0" o

3 ~ ~ ~ ~ ~ 1 00 0.1& 0 l ~3
0 0 a0000..000CO 04 ca1

a 00 00 - an 0- al iO : D
41C00 ID 0000 0,

0000 0. W000000000
0db0aP.00D000 000 0 000D00 3c xh

ae ooooooooo ooo 3&:. £0
0o o o o o e o o 0 "z.. 0

eo o oo o oo o o VI. &6 W

0

IV 0 !

. a a 0 D 00 0 0 0 0 0 0 0 x Al 0 m

9 0l 4r a III 0 0 oo o eo o oo o a r 0
hi~~~~2 0 0t a 0 0 00 0 0 0 0 0 0 00 z 2

* 0 0 0 0 0 aaC 0 a a0W0004.10000 Cc, aW
U Al wef -

ew Ae=

V00000 000in.OaeA 3 0 0

C~4 0 61.1h 0 00 0 00 0 0 00~
h. s. I-. 0 0~ di 0Co00 0 0 0 0

61. a 0c D 0 0 x00 0 0 0 0 0 0

Isi Ci. to. a g 0t v 00 0 00 0 00 0 0 1

Ii.. I

Oe l OO W 0 UW 0 0 a-~ 2 0 Z 0

ot a 0 02 0 0anOh 0 0 00 0 0 0 0
- ~ ~ P 0 :ON 31 a. a0h 0 A 0 0 0 0 0 i

01 "1 0 a
41~~~~ ~ ~ ~ RZl Xy fo V l tfu N 1

o a e~e P-e0 0 a00a 0 00 00a.0

,n 0 0.10 * :a 0 0 aoeO a a a co a 0 00.0aooo
o 4.* 0U0 a C.01 00000000000c:0000 0 0

a0m aa a 0 o . - . 0 0 @ 0 0 0a04 o o o4o au .:00 0Cal0 O D
0 g o e e .0 cll 0a4. c O O o o o . o.o. .o.e.o.e:.o o 4 0 4 D a 0 .

0 0oaa 0 %*f0 O 000o00 00 00 0 0 0 0 0 0
0V LL 0 acc OM O& 000000000 00000 ...

0
00

r 0 C

ill :1 1: Co~~oc o oeoooo a a 0 00
u. 0 :)W0 0 C. 0a0 0 a a cc 000O 0 a a a0 a 0 a z~00 0 0 0 0e o 0 0 000 0

a 4D 6- 09000 a 0 0 a 00a0 0 0C 0 000000cc0a0c0
o Ug W0:000000000001 00 00qeC

7.g 0 t 0 ei0 000 0 a0 C, r0 . a C0a 00 0 0
ev 0 a 0 @0d U. 000a0. 0. I 0-0--0-0-0-0- 0

00 a

0 0 00 a cp0a 0- 2

11.0 11. CL g
Ac- r.- 0 0 C oo o oo o 0 o0 0 0oc00 0

00 cc00cc 0 a= 0 t.14 1 0 0 0 0 0 0 0 0 0 0 0 0 0

g ~ ~ ~ r 0 0 ct0 :09za 0 0 00 0 0 0 0 00 0 0 0 0
Il 0t 0 cOe O O O O O O O 0 00 0 0 00 0 0
oa 0 000 0 0 1 0 0 0 0 0 0 0 0 ~ c a0c00

0 C. a Q-za zagzoza0000 0000 00 Z9
0

a0 0

ID 0 j. 10N 0 0 0 0 0 0 0 0 0 0 ~ 0

09 . C a0c ora 0 0 0 0 0coo000 0 00a00 0 0

ae oo 0o1 o0 oooo0 0 00000

00 00 0 00 z

0~~ a

In 06l . 0 0ce 0 0 c 00 0 0000c 000 00v00a000D
IL I0 t %I s 00000 0 0 0 0@ 0 0C 0 0 0 0

* 0 0 0 =%
wl. w Vg.

on I
4t ! I

09 360 0 0 0 0 0 00 0 0 0 0 0 0 0
Pj P . ~ia. 0 0 ue C 0 0 00 0 0 0 0 0 0 0 0
v0 49 0.c 0 w. 0 0 0 0 0 0 0 0 0 0 0 0 0 0

000 00 U.A V" a f 000 U% roP a CCC .0"PN 00 :0: 00C 0 ~
* Cd fm 000 C i C aa 0 0 0 i&A i. 0- 0 C 0 @0 @00

a C!000 inA1N 0 a 0 a!40 N N a0 00 000000 00QM0o
a 004000000W a 000000co.. 0 WO @000 000000a0

00 I 00 0 vn m:0a 0 in M 000 NN 0 0 a 0 0 00 C 000

@L0 0a0 0 m 0000- m N 00 0 0 "1 C N 0 0 0 0 0 000 C

0~U 0 0 A 0 0 0 @ O O O I W a 0 0 ! 0 - 0 0 0 0r*

.0 @ 1 =40 0 C0 0 P' Q0 N4N 0C 000A 0 coo 00=

C. 0A0hO O O J O O O O W O O U O . 0 0n a C L

o 4l 0 0 i 40 000N 0 00 0 0 00~

M0 0000

a-.c n . 0 : .oooo .i : ONooo. . 0cC 0 a
U00 0' .0 N9,10,100 000140 0 w~j 000 OLi0 no0

0 0
0z

C & f 0000 00 aw% 00 0 MNacoco0D 00c),CO Ca
0 0 0 6. 0 Cu u wLi 0 0 a 00@hW 00 0000uODcOD 4DmC c o0 a- to

ON0 a 000W47

0 0a

m a m-N4. W 000 0 9"0a o .C baJnWot 4 0 0

a a C, OO N0OOOONU0V 0 0 fIN400a000

*~ 0000

CL 0i0
M 0c00A o 0vNO m -0 V

C C0 N ji izz 0U.41 ww 0c 00 z W J W&6 * 0000a

mo

a 0 0000 z

0l 0 0Waa 0 0 i" v 0 a U 00 a Nn I" fn In a a 0 a 40 0 a v 00 0 0

a- OOOvOiOOOO0uwuw .IOOOUOO
99 0 L

000 *C o LM00

.00
C-

IZA . #j% --Aa 4 o aa z-
-0- -N0 0 0 -0 W 0 ~ I 0- 0000--- u f

Ia' onN9 0 L , . g 00 0 L ~ & 0 0 0 w 00

APPENDIX B: SUBROUTINE FUNCTION
B.1 APPLICATION PROGRAMS

SUBROU-
NUM- TINE
BER NAME FUNCTION

1. DKDEL ROUTINE TO DELETE FILE FILNM (IF RECIDO-) OR LR DECID IF NOT 0
FILE DOES NOT HAVE TO BE OPEN BUT MUST EXIST FOR RECORD DELETE FILE
DELETE OF NON-EXISTENT FILE IS NOT AN ERROR

2. DKFIL ROUTINE SET FSTAT (COMMON) TO iNDICATE STATUS OF FILNM (COMMON)

3. DKGET GET LOGICAL RECORD RECID IN DATA SET NDS (COMMON)

4. OKINS INSERT LOGICAL RECORD INTO DATA SET NOS (COMMON) IN FILE FILNM
(COMMON) AFTER LR RECID.

5. DKLEN ROUTINE TO GET LENGTH OF LR RECID IN DATA SET NDS (COMMON)

6. DKLOS ROUTINE TO CLOSE FILE FILNM (COMMON) IN DATA SET NDS (COMMON)

7. DKNDS GIVEN DATA SET NAME, RETURN DATA SET NUMBER

8. DKNIT INITIALIZES ALL DATA HANDLER VARIABLES

9. DKOPN OPEN A FILE ROUTINE.

10. DKPUT PUT LOGICAL RECORD INTO DATA SET NOS (COMMON) IN FILE FILNM (COM)

11. DKRNM ROUTINE TO RENAME FILE

12. DKSET ROUTINE TO RETURN INFORMATION ABOUT DATA SET NOS

13. DKXIT ROUTINE TO LOOP THRU ALL DATA HANDLER DATA SETS (NDA) AND CLOSE
EM DOWN

B.2 FUNCTION PROGRAMS

SUBROU-
TINE
NAME FUNCTION

DKABP ADD TO BUFFER PRIORITY: CURRENTLY KEEPS AN ORDERED LIST OF BT
ENTRIES BY MOST RECENT USE. N IS IGNORED.

DKALO ROUTINE TO TURN OFF THE PROTECT BIT FOR FILE FILNM IN DATA SET
NDS. FILE NEED NOT BE OPEN

DKARG CHECK VALIDITY OF NDS AND OPEN DATA SET IF NOT ALREADY OPEN

DKASG ROUTINE TO ALLOW USER TO CONNECT A DATA SET NUMBER NSW TO A
PARTICULAR LOGICAL UNIT NUMBERLUN AND FILE NAME FNAME.

DKBEX INTEGER FUNCTION TO EXTRACT NUMBR BITS FROM SOURCE WORD

DKBIN REAL FUNCTION TO INSERT THE LOW-ORDER NUMBR BITS FROM ISOR
INTO RESLT AND RETURN IN REGISTER. RESIT IS NOT MODIFIED.

DKCBL ROUTINE TO COMPACT A BLOCK AT BUFFERIBTADD CALCULATE NUMBER OF
SU'S TO MOVE FROM POOL SU OTH DISPL IFROM TO POOL SU OTH
DISPL ITO BY SETTING NO. SU'S IN BLOCK FROM DST AND NO. SU"S
FREE A"" Q'ND OF BLOCK (IN PR HEADER) MOVES SU'S ONE AT A TIME
WITH UKPAK AND DKUPK AND UPDATES SU'S FREE AT END OF BLOCK.
ASSUMES IFROM.GE.ITO EVENTUALLY MUST ALSO MODIFY FST

DKCDS OP SYS FILE INTERFACE ROUTINE TO CLOSE A DATA SET

DKDD1 GET ALL MACHINE CHARS IN MACH (1-13)

DKDD2 DATA SET DUMP ROUTINES

DKDD3 DATA SET DUMP ROUTINES

DKDD4 NOT WRITTEN

DKDDF ROUTINE FOR DYNAMIC DEFINE FILE STATEMENT IN OS FORTRAN ISSUES
OPEN ON DDNAME FTNNFOO1

DKDDS DUMP DATA SET ROUTINE TO PRODUCE A FORMATTED DUMP OF DATA SET
NDS

DKDLF ROUTINE TO DELETE ENTIRE FILNM (COMMON) IN DATA SET NDS (COMMON)

DKDL RROUTINE TO DELETE LR (NSGNBL) IN FILE FILNM DATA SET NOS

DKDMP DATA HANDLER

.... ..

SUBROU-
TINE
NAME FUNCTION

DKDSG ROUTINE TO DELETE THE SEGMENT WHOSE LR HEADER IS IN H IN BUFFER

IBTADD ASSUMING KBTPP SET BY DKSTQ (VIA DKFND) DOES NOT PRESENTLY
COMPACT THE BLOCK OR MODIFY FST

DKEBF ROUTINE TO EMPTY THE BUFFER AT IBTAD WHOSE HEADER IS IN D CHECKS
FOR PREVIOUS I/O COMPLETION WRITES AND WAITS IF WRITTEN INTO AND
ZERO ENTRY AND D

DKERR CKECKS ERROR HANDLING SWITCH AND EITHER PRINTS AND ABORTS OR
RETURNS WITHOUT SAYING ANYTHING

DKFBF FILL BUFFER ROUTINE: BT ENTRY AT IBTAD IS IN D GET BLOCK NBL OF
DATA SET NSW IN AND WAIT FOR READ COMPLETION

DKFND ROUTINE TO LOCATE BLOCK NBL SEGMENT NSG OF DATA SET NSW. N

SEARCHES BT'S FIRST'THEN READS INTO CORE RETURNS IBTAD=THE BT ENTRY
DISPL WHERE PR IS DOES NOT SET MEMORY

DKGBF GET A BUFFER ROUTINE: CHOOSES THE NEXT AVAILABLE BUFFER USING
DKSBF ROUTINE SETS ITS PRIORITY HIGH WIHH DKABP AND EMPTIES IT WITH
DKEBF. D AND BT ENTRY WILL BE ZEROED AND ALL 10 FINISHED ON RETURN.

DKGBL ROUYINE TO GET A BLOC5 FROM FREE SPACE TABLE OF DATA SET
NDS WORD FROM BIT MAP STORED IN DST (IDSWD) NUMBER DST (IDSWN)
BITS CORRESPOND TO BLOCKS NUMBER RT TO LEFT IN EACH WORD IF DST
(IDSWN) - 0, NO WORD THERE. ALWAYS ASSUME WORD MUT BE REPLD
USES INTERNAL ARRAY A TO STORE DST ENTRY

DKGBM ROUTINE TO GET A BIT MAP WORD FOR NS WHICH HAS AT LEAST ONE
BLOCK AVAILABLE (BIT=O) WITHIN THE BLOCKS INITIALIZED

DKLG1 ROUTINE TO GET THE SEGMENT OF THE LR (NSWNSEGNBLK) CONTAINING NCS
INTO CORE BUFFER AND SETS O=BT HEADER H=LR HEADER SETS QPPP FOR
BUFFER CONTAINING DESIRED SEGMENT ALSO SETS PREID FOLID AND LRLEN IN
COMMON FROM EITHER LAST BT MEMORY IF SEGMENT FOUND THERE OR FROM FIR!
AND LAST BUFFER EXCEPT FOR THE LOOP TO GET LAST SEGMENT

DKGLS ROUTINE TO GET LAST SEGMENT OF LR (NSGNBL) IN NDS

DKGO ROUTINE TO INITIALIZE THE DATA HANDLER BUILDS NECESSARY TABLES
FROM ARRAY IN BLANK COMMON STARTING AT WORD ISTRT FOR ILEN WORS -
ALSO SETS CONSTANTS AND INITIALIZES VARIABLES

DKGO1 SET MACHINE PARAMETERS IFR IBM 360/370 WITH OS -

SUBROU-
NUM TINE

*BER NAME FUNCTION

DKIDS ROUTINE TO INITIALIZE THE RECORDS IN A NEW DATA SET IN

PARTICULAR TO SET UP BLOCK 1 WITH TWO SEGMENTS:

DKJCL

DKMFS ROUTINE TO SEARCH THE FST AND LOCATE THE BLOCK WITH THE MOST
FREE SPACE WHICH IS RETURNED IN NBL.

DKMIC ROUTINE TO SEARCH IN CORE BUFFER TABLES FOR ONE WITH DATA SET
NOS FILENAME FILNM AND RETURN THE ONE WITH THE MOST FREE SPACE.

DKMIR ROUTINE FOR BUFFER MEMORY ID RESET TO ENSURE THAT WHEN A NEW
LOGICAL RECORD (RID) IS ADDED OR INSERTED THE PRECEEDING (NSGPNBLP)
AND FOLLOWING (NSGFNBLF) RECORDS (IF THEY APPEAR IN ANY BT MEMORY)
HAVE THEIR FOLID AND PREID ENTRIES RESPECTIVELY EQUAL RID.

DKMLR ROUTINE FOR MEMORY LENGTH RESET IN BT ENTRIES

DKMST SETS BUFFER MEMORY PARAMETERS INTO D

DKNCS ROUTINE TO COMPUTE THE NUMBER OF CHARACTERS IN A LR SEGMENTS

DKNSG ROUTINE TO GET NEXT SEGMENT OF THE LR WHOSE HEADER IS IN H INTO
A BUFFER SETS BT ADDR IN IBTAD BT ENTRY IN D.

DKOUT BRINGS ACTIVITY ON THIS DATA SET TO AN ORDERLY HALT CLOSE ANY
OPEN DH FILES IN THIS DATA SET AND WAIT FOR ANY BUFFER I/O ACTIVITY.

DKPA1 PUT ADD RECORD BUFFERING LOGIC - ACTION 1: LR WILL ENTIRELY
FIT INTO IN-CORE BUFFER AT IBTADD

DKPA2 PUT ADD RECORu BUFFERING LOGIC - ACTION 2: LR PLACED IN REMAINDER
OF THE IN-CORE BUFFER AT IBTADO AND THEN IN ONE OR MORE NEW
BLOCKS. THIS LATTER IS DONE VIA DKPA4.

DKPA3 NOT WRITTEN YET

DKPA4 PUT ADD RECORD BUFFERING LOGIC - ACTION 4: LR MUST BE PLACED
IN ONE OR MORE NEW BLOCKS -

DKPA5 PROGRAM NOT WRITTEN YET

DKPAK ROUTINE TO PLACE ICT WORDS OF D (IN SU'S, NBU BITS) INTO POOL
ARRAY

DKPAR ROUTINE TO DETERMINE THE PUT ADD RECORD BUFFERING RULE

~N•
I ,T..

SUBROU-
NUM TINE
BER NAME FUNCTION

DKPBL PUT BLOCK NBL BACK IN BIT MAP OF DATA SET NDS SO IT CAN BE REUSED

DKPBM ROUTINE TO REPLACE THE NTH SU (IN WORD) IN THE BIT MAP OF NDS

DKPMD(A) ROUTINE TO UPDATE THE PTR IN THE LRID WRITTEN PRIOR TO CURRENT
ONE IF IN CHAIN MODE

DKPRO ROUTINE TO SET PROTECT BIT FOR FILE FILNM IN DATA SET NDS

DKPSG PUT LR SEGMENT ROUTINE USED TO ADD A NEW SEGMENT AT END OF BUF <.1

DKPSH ROUTINE TO REPLACE THE LR SEGMENT HEADER IN H INTO BUFFER

DKRBL READS BLOCK NBL FROM DATA SET NSW INTO BT ENTRY IBTAD(IN D)

DKSBF SELECT BUFFER ROUTINE

DKSFD SEARCH FILE DIRECTORY ROUTINE IN DS NSW

OKSOF SEARCH OPEN FILE TABLE ROUTINE FOR FILNM (COMMON) IN DATA SET NOS
(COMMON) RETURNS IOFAD:

DKSTQ ROUTINE TO LOOP THRU BT ENTRY IBTAD AND LOCATE SEGMENT NSG

DKTLR ROUTINE TO TRUNCATE CURRENT SEGMENT AT CHAR NCE COMPACT THE
BLOCK AND DELETE ANY FOLLOWING SEGMENTS.

DKTRC ROUTINE TO PROVIDE A TRACEBACK AND OTHER INFO WHEN ERROR CALLED
BY: DKERR IBM OS VERSION H LEVEL OBJECT TIME SYSTEM

DKUPK ROUTINE TO PLACE ICT SU'S OF POOL ARRAY P BEGINNING AT ISTRT+'
INTO D (ONE SU PER WORD)

DKWAT WAIT ROUTINE: WAITS FOR BIT IBIT TO CLEAR IF SET IN BT STATUS
WORD. ALLOWS ASYNCHRONOUS I/O OPERATIONS WITH THE PROPER OP SYS
INTERFACE SUPPORT (DKRBL AND DKWBL).

DKWBL WRITES BLOCK NBL FROM BT ENTRY IBTAB(IN D) INTO DATA SET NSW

DKWIN ROUTINE TO SET THE 'WRITTEN INTO' BIT IN BT ENTRY IN D
DOES NOT REPLACE D

DKXBM ROUTINE TO EXTEND BIT MAP BY ONE SEGMENT

DKXDS ROUTINE TO EXTEND DATA SET

S-".- - - - - - - -. .-

SUBROU-
NUM TI NE
BER NAME FUNCTION

DKXFD EXTEND FILE DIRECTORY OF DATA SET NDS (COMMON) BY ONE BLOCK

DKXLR ROUTINE TO EXTEND THE LR (NSGNBL) WHOSE LAST SEGMENT IS IN BT
ENTRY IBTAD,D AND WHOSE LR HEADER IS IN HEDLR

XOR

DKODS OPEN DATA SET TO HOST OP SYSTEMS FILE CONTROL SERVICES

OKOMP DUMPS DATA HANDLER COMMON AND POOL THIS ROUTINE IS A FUNCTION OF
MACHINE CHARACTERISTICS SUCH AS CHARS PER WORD AND CHARS IN A DATA
SET NAME

GOT236 THIS ROUTINE IS ENTERED BY THE FORTRAN EXTENDED ERROR HANDLING
ROUTINES

BITEX RIGHT JUSTIFY THE BITS TO BE RETURNED

BITIN THE RIGHTMOST NUMBR BITS OF SOURC ARE INSERTED INTO RESLT
BEGINNING WITH BIT START OF RESLT. THE REMAINING BITS OF RESLT
ARE NOT MODIFIED

ICOPY COPIES NUM CHARACTERS FROM SOURC (STARTING AT SFST) TO DEST
(STARTING WITH DFST) ALL OTHER CHARACTERS OF DEST ARE UNCHANGED

PACK PACK NUM CHARACTERS INTO THE STRING DEST STARTING WITH CHARACTER
L2 OF DEST. THE CHARACTERS ARE TAKEN FROM THE LEAST SIGNIFICANT
CHARACTER OF THE ELEMENTS OF THE ARRAY SOURC.STARTING WITH
STANDARD UNIT Li. -4

SNAP

SYSCM INITIALIZE SYSTEM COMMON TO THE STANDARD VALUES REQUIRED BY THE
PARTICULAR MACHINE IMPLEMENTATION

DKMVC MOVE NC CHARACTERS TO A(TO)+ITOFF
DKBNF ROUTINE TO INSERT AN INTEGER FORTRAN WORD INTO A REAL

FORTRAN WORD

DKBXF ROUTINE TO EXTRACT AN INTEGER FORTRAN WORD FROM A REAL

FORTRAN WORD.

AND

DKCMP

-. '. " "-- " .. " - .- -_ .. .- ' . . ' ., . , ' _ , . , S ' . - -.-. . .

SUBROU-
MUM TINE
BER NAME FUNCTION

OR

* I.'SHIFT

* TIMDAT

I

I

